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Shocks and energy dissipation in inviscid fluids:
a question posed by Lord Rayleigh

By J A M E S E. B R O A D W E L L
8 Muirfield Road, Half Moon Bay, CA 94019, USA

(Received 28 October 1996 and in revised form 27 May 1997)

Lord Rayleigh argued that after a discontinuity develops in a one-dimensional com-
pression wave in an ideal inviscid fluid some sort of motion must continue. Arguments
are given in support of this view and a suggestion is made as to what that motion
might be. The relationship of this motion to that proposed by Onsager for incom-
pressible inviscid turbulent flows is discussed.

1. Introduction
In his famous paper ‘On a Difficulty in the Theory of Sound’ G. G. Stokes (1848),

after showing that a discontinuity inevitably develops (where the characteristics
meet) in a compression wave in an ideal, i.e. inviscid, fluid in which the pressure is
proportional to the density, goes on to write:

.... some motion or other will go on, and we might wish to know what the nature of
that motion was.

These two phrases state the subject of this paper. The second expresses a point of
view; the first seems self-evident, as it evidently was to Stokes. There is, of course, no
present general interest in this problem because in real gases a shock wave is known
to form in these circumstances.

Stokes proposed that the subsequent motion was a wave of finite amplitude and
showed that such a motion is consistent with mass and momentum conservation:

ρ1u1 = ρ2u2, (1)

p1 + ρ1u
2
1 = p2 + ρ2u

2
2. (2)

In a letter to Stokes dated June 2, 1887 (reprinted in Truesdell’s preface to Stokes’s
Mathematical and Physical Papers, 1966), Rayleigh pointed out that the proposed
flow does not satisfy the energy equation:∫ 1
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Recognizing the validity of the objection and remarking that Sir William Thompson
had earlier pointed out the error, Stokes removed the proposed solution when the
paper was published in his collected works.
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In the revised paper, Stokes writes that his mistake was not an unnatural one
because in his model (to use current terminology) describing a reversible mechanical
system, the conservation of energy is contained in the conservation of mass and
momentum, an observation that raises the question: how can a solution to (1) and
(2) fail to satisfy (3)? Rayleigh (1894) provides an answer by showing that if a force
acts between station 1 and 2, first to the left and then to the right, such that the net
force is zero, then (1) and (2) are satisfied, but energy is either added or withdrawn
so that (3) is not satisfied.

2. Rayleigh’s question
Having ruled out the discontinuous wave as the motion after the development of

the discontinuity, Rayleigh still wished to know what the motion in an ideal fluid
was, and argued incisively that the question was a valid one. He knew, of course,
what the motion in a real viscous fluid was: he discussed the matter in, among other
places, the paper in which he worked out the structure of the shock wave. In this
paper (Rayleigh, 1910)† he wrote:

When discontinuity sets in, a state of things exists to which the usual differential
equations are inapplicable; and the subsequent progress of the motion has not been
determined. It is probable, as suggested by Stokes, that some sort of reflection would
ensue. In regard to this matter we must be careful to keep purely mathematical ques-
tions distinct from physical ones. We shall see later how the tendency to discontinuity
may be held in check by forces of a dissipative character. But this has nothing di-
rectly to do with the mathematical problem of determining what would happen to
waves of finite amplitude in a medium, free from viscosity, whose pressure is under
all circumstances proportional to the density. To suppose that the problem has no
solution would seem to be tantamount to admitting an inherent contradiction in the
assumption, usually made in hydrodynamics, of a continuous fluid subject to Boyle’s
law. It would be strange if the necessity of a molecular constitution for gases could be
established by such an argument.

Virtually the same statement appears in both the 1877 and 1894 editions of The
Theory of Sound. The difficulty is present, of course, when p/p0 = (ρ/ρ0)

β and β
is any positive constant. We denote the constant as β not γ to repeat Rayleigh’s
emphasis that what is under discussion is an ideal continuum not a gas for which β
would denote the ratio of specific heats.

In spite of the clarity of the above quotation, the question it raises bears repeating:
what is the motion in an inviscid fluid in which p/p0 = (ρ/ρ0)

β after a compression
wave steepens to a discontinuity?

3. The Friedrichs discussion
The only writer, to the author’s knowledge, to address this matter further is K. O.

Friedrichs (1954), who quotes this passage, but rejects the idea that some motion must
follow. Instead, he concludes that an ideal fluid cannot exist under these conditions.
He writes:

Not only is it true that gases as they actually occur in nature can no longer be
described as ideal under these circumstances, but it is also impossible in principle that
an ideal gas could exist under the circumstances. (Emphasis added)

† It is remarkable that this paper and G. I. Taylor’s on the same subject (Taylor, 1910) were
received by the Royal Society within three days of each other. Taylor does not comment on
Rayleigh’s worry about the ideal fluid; his paper concerns shocks in real gases.
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Figure 1. Spring-bead model.
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Figure 2. Bead motions in a shock flow.

‘Impossible in principle’ in this context would seem to mean inherently contradictory,
to use Rayleigh’s words, but Friedrichs does not point out any such contradiction.
The only justification for this conclusion is, apparently, the non-existence of a solution
to the flow problem. That Friedrichs is forced to such a conclusion is an indication
of the degree of seriousness with which he considered Rayleigh’s position.

Friedrichs closes his discussion of the matter with the following remark:

This quotation [Rayleigh’s above] is given to show that at times, though perhaps rarely,
a natural conception about a physical situation does not lead to the right assumption
about the existence of an associated mathematical problem.

It is proposed in the following that Rayleigh was right and Friedrichs wrong, i.e.
that there is a mathematical problem associated with this physical situation.

4. The von Neumann model
A resolution to the dilemma was suggested to the author by results from a model

for one-dimensional flow gas flow. J. von Neumann (1944) noted that if the space
derivative in the inviscid one-dimensional equations of motion is replaced by its
finite difference representation, the resulting equations describe, exactly, the motion
of a string of particles or ‘beads’ connected by (nonlinear) springs as sketched in
figure 1. When one end of such an array moving to the left is brought to rest, the
resulting bead motions are as shown in figure 2, from a calculation by Darin Beigie
(private communication). Von Neumann proposed that the vibrations set up behind
the ‘shock’ represent the dissipated energy and that in this way this conservative,
reversible system could be used to study flows containing shocks.†

In the model when the dissipated energy per unit length is constant, the bead

† Lax (1986) and Hou & Lax (1991) have express doubts about the idea.
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Figure 3. Inviscid flow in a torus.

vibration frequency increases inversely as the mesh spacing and the bead excursions
fall correspondingly. Thus as the spacing and bead mass go to zero, the excursions go
to zero and the frequency becomes infinite. It is proposed that this is what happens in
the continuum. If this is the case, the steepening compression wave leads to regions
of the flow in which derivatives do not exist, and the fluid properties in these regions
will depend on the spatial variable like the Weierstrass function, i.e. continuously but
with no derivative. (Such functions are discussed in Mandelbrot 1982). The conclusion
to be drawn from this heuristic argument is that the downstream flow must be one
without derivatives – though not necessarily one with only one-dimensional ‘internal’
motions; that could only be generated by exactly one-dimensional initial conditions.

5. Energy dissipation in turbulent flow
A closely related situation is discussed in a paper, Eyink (1994), brought to

the author’s attention by William C. Reynolds, on a conjecture of Onsager (1949)
concerning energy dissipation in inviscid incompressible flows. The paper opens with
a quotation from the Onsager reference which is as follows.

It is of some interest to note that in principle, turbulent dissipation as described could
take place just as readily without the final assistance by viscosity. In the absence of
viscosity, the standard proof of the conservation of energy does not apply, because the
velocity field does not remain differentiable!

Onsager remarks that to be applicable to flows under these conditions, the equations
of motion have to be reformulated.

Eyink proves† the conjecture, and writes: ‘We also construct a simple example of
an initial velocity field [...] which has, in some sense, an instantaneous time-derivative
of its energy which is non-vanishing. This suggests that its evolution forward in
time provides a solution of the Euler equations which has a total energy which is
either decreasing or increasing in time (by time-reversal invariance either behavior is
possible.)’

To examine a situation analogous to that in the shock wave flow in which physically
realizable initial conditions are imposed, consider the flow of an inviscid incompress-
ible fluid in a torus as sketched in figure 3. Let the velocities in the inner and outer
regions be such that the net angular momentum is zero. The instability of the vortex
sheet separating the two regions leads to an intermingling of the different velocity

† Another proof is given in Constantin, E & Titi (1994).
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fluids at all scales and consequently to a final state at rest in the mean. In this
case the dissipated energy must reside in some sort of vortical motion, again of zero
dimension. This motion, and that behind the shock wave, could well be called heat,
or, more properly, internal energy. Rigorous solutions of the two problems would
contain these thermodynamic terms.

6. Conclusion
Why was Rayleigh certain that there had to be a motion for all time in the shock

wave problem, and why must the same be true for the turbulent motion in the
torus? The answer proposed here is simply that the imagined fluids are possible real
substances – meaning that they could exist without violating any physical law. Since
such fluids must have motions for all time obeying mass and momentum conservation
in response to physically realizable initial and boundary conditions (conditions given
in these instances by the developing compression wave and by the unstable vortex
sheet), and since these motions are described exactly by Euler equations, absent
singularities, it was natural to expect solutions for all time. The difficulties arise
because the conventional mathematical description of the motion is inapplicable in
both circumstances. It is this aspect of the difficulty that is of interest here; Eyink
discusses the possible relevance of the Onsager conjecture to turbulence theory.

There is, of course, a large literature on the fluid mechanics of inviscid fluids.
The inviscid shock wave is an unsolved problem in this class of flows. If there were
a solution in conventional mathematical terms it would be part of that classical
literature, however unrealistic the solution might be. The inviscid, incompressible
flow about an inclined flat plate with its singularities is an example of such a flow.
The absence of a shock wave solution comes not from the unreality of the physical
assumptions, but from the non-standard, in fluid mechanics, mathematics required
for the solution. This problem is an especially clear example in classical mechanics of
how a problem in physics may require a generalization in mathematics. Whether or
not it would be useful to solve the problem may be questioned.

Although there is no current interest in the shock wave problem, the opposite is true
of incompressible inviscid flow: the study of singularity formation and its implications
is an active part of current turbulence research; see, for instance, Shelley (1992) and
Eyink (1994). (With the vortex sheet in figure 3 replaced by a smooth profile, this flow
might be an interesting example to consider.) It may be useful to note the similarities
in the two flows discussed here. It is known that the energy dissipation rate in shock
waves and in high-Reynolds-number turbulent flows is independent of the viscosity;
shock wave thickness and turbulent velocity fields respond to viscosity changes so
as to maintain the required dissipation rate. The discussion above suggests that this
range of independence may include zero viscosity. For an incompressible fluid, the
flow field, away from walls, in the limit of zero viscosity would appear to differ little
from one of zero viscosity even though the Navier–Stokes equations are singular at
the zero viscosity limit. The situation for the compressible fluid is more complex –
to make a comparison, an equation of state of the inviscid fluid with the internal
excitations would have to be derived.

These two inviscid fluids have another, related, similarity. Both obey the Second Law
of thermodynamics, i.e. within closed, fixed boundaries, both would move from non-
equilibrium initial states to equilibrium states where they would remain, presumably
for infinite time, before returning to the initial states in accordance with the Poincaré
theorem. This observation allows a choice between the two solutions mentioned by
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Eyink in the quotation above. The equilibrium states arise solely from the nonlinearity
of the equations of motion. This behaviour is remarkably similar to that of a gas, i.e.
to a fluid composed of particles.

In addition to proposing an answer to Lord Rayleigh’s question, the paper suggests
that if the heuristic arguments presented can be made rigorous, then the Onsager
conjecture (now proved) can be interpreted to say that the Euler equation solutions
without derivatives can conserve energy, and that the motions of these inviscid fluids
follow the Second Law.

The author thanks Anatol Roshko for his comments on the similarities of the
shock wave and turbulence flows, and Godfrey Mungal for many helpful discussions
of these ideas.
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